Pages

Wednesday, August 27, 2014

An Interview with Jennifer Brea: Obstacles, Adjustments, and Inspiration

This article originally appeared on ProHealth.

By Erica Verrillo

Last January, ProHealth named Jennifer Brea as its Advocate of the Year for her exemplary work in creating the film, Canary in a Coal Mine, as well as for her inspiring commitment to the ME/CFS community.

Jennifer Brea contracted ME in 2011, when she was suddenly hit with a flu-like illness. A little over a year later, she became bedridden - just a few months before her wedding.

At the time, Jennifer was enrolled as a PhD candidate in Harvard University’s Department of Government. She was also pursuing a Master’s degree in statistics. Before beginning her doctoral program, Jennifer had worked as a freelance journalist covering China and East Africa for the Guardian, the Scotsman, the Africa ReportChina Daily, and Ebony Magazine.

It was her background in journalism that led Jennifer to the idea of making a full-length documentary about ME/CFS. To drive home the impact of the illness, Jennifer wanted to feature the stories of patients as well as the clinicians who have spent years treating those patients and attempting to unravel the puzzle of ME/CFS.

Last fall the project garnered over $200,000 in an outpouring of support from the ME/CFS community. In November, Canary in a Coal Mine won Indiewire's Project of the Month, which earned her a creative consultation with the Tribeca Film Institute, one of the industry's most prestigious funders of innovative film projects. In July, Canary in a Coal Mine was chosen as a Sundance Institute Documentary Film Program grantee. It was one of 44 projects selected from over 600 applications from 69 countries around the world.

Jennifer was kind enough to answer some questions about her experiences making the film, and about her battle with ME/CFS.

An Interview with Jennifer Brea

1) After falling ill, when did you suspect you had ME/CFS? Had you already known about the illness? How were you diagnosed?

I first suspected I had Chronic Fatigue Syndrome in spring of 2011, three months after the acute onset of my illness. I had never heard of it before, but it sounded like something you get if you are stressed at work or lead a busy life. I think I must have deduced from the name and the symptoms that I'd either simply get over it or that it might be a drag, but that I'd take some vitamins and more or less go on with my life. Given that horrid name and the complete lack of public (or medical) education on the illness, what else was I to think? It was a busy year, and so I just kept on going.

I was classic Fukuda, minus lymph nodes. I had recurrent sore throats, fatigue, weakness. And I was extremely dizzy. I told my doctor I thought there was something wrong with my immune system. He told me that if there was, I would have had that immune dysfunction since I was a child. He also told me that there was a lot overlap between Chronic Fatigue Syndrome and depression. 

Around my one year anniversary, I went to the ER with stroke-like symptoms. The illness had become something entirely different. I began having bizarre, transient neurological episodes. I was now classic International Consensus Criteria (ICC) ME. Gone were my "fatigue" and my sore throats. Arrived was tachycardia, perverse metabolic collapse in the face of minor exertion, sound sensitivity, ataxia, agraphia and expressive aphasia (it wasn't that I had a hard time finding a word – I was incapable of verbal thought). That's when I found the ICC online. It detailed all of my symptoms. The only other disease that came close was MELAS (Mitochondrial encephalomyopathylactic acidosis, and stroke-like episodes). I brought the Journal of Family Medicine article in to a half dozen doctors and no one had any idea what to make of it. One doctor actually threw it on the floor. Another diagnosed me with a somatoform disorder. After ruling out nearly every known infectious disease and a battery of normal (or mildly, sub-clinically abnormal) test results, I was finally diagnosed in summer of 2012 in Miami by Irma Rey. And of course, her and Nancy Klimas's tests showed profound immunological dysfunction.

2) What aspect of the illness have you found to be the most difficult to cope with? How have you managed to deal with it?

The most difficult aspect of this illness was the loss of identity. I went from being a Ph.D student at Harvard, a writer, a student of statistics to a person for whom writing a three-sentence email was enough trigger a cascade of inflammation in my brain that might take days to recover from. If I could not read, and I could not write, and I could not think, then who was I? Was I still the same person? Would I have the same worth? You have to understand that before my diagnosis, I thought I might be dying, and if I wasn't dying, I thought it was entirely possible that one of my many, almost daily episodes of expressive aphasia or absence might become a permanent state. That I might disappear and never come back.

I dealt with it by taking on the most insane and ambitious project of my life. Perhaps that's the gift of having nothing left to lose!

3) When did you first have the idea to make a film? What inspired you?

At first, it was a matter of survival. The second year of my illness, I was bedridden for five months. Then, I had three months of near-remission. I could take showers, go for mile-long walks, make dinner, cross state lines. Sometimes I was even well enough to dance in our living room for no reason–how I miss that! I thought I had cracked the code and achieved escape velocity. 

When the collapse came, I had to see this for what it was: a long battle with an uncertain outcome. It was such a blow that for two months I completely cut off contact with the outside world. I knew I was slipping into a depression. I think I must have felt I had only two choices: I could curl up in a ball and die, or I could make something.

The film idea came from a number of places. First, when I was unable to really read or write, I started shooting a few video diaries as a sort of therapy. I'd also started filming my symptoms so I could take them to doctors' appointments. The more experiences I had with doctors, and the more I learned of other patients' experiences, the more I came to be of the mind that one of the biggest challenges to greater acceptance of this illness is that we don't do a very good job of performing sick. Either we are well enough to leave our houses and look more or less normal, or we're not. And if we're not, whether we are permanently home or bed-bound, or just having a bad day, you'll never see us at our worst.

Fortunately, film does not suffer from those limitations. A camera can be anywhere it needs to be. It can be there for the best and worst moments. It can reveal a kind of existence that I think would be hard to believe unless you see it with your own eyes.

4) Journalists have quoted you as saying that this film is an "uprising from our beds." What do you intend to do with your film once it is finished?

Ha! That's actually a quote from Anna Kerr, a patient from Australia. But it's my favorite quote from the entire campaign.

I have hopes for a festival run and wide distribution. Beyond that, I want to cultivate around the film a space for storytelling and activism, of which the Kickstarter campaign was just an appetizer. I want to build bridges to other illness communities, and I plan to use the Advocate of the Year Award to seed a new project that will be a minor downpayment on that. If we can make a big splash with the premiere and festival run, I hope to use that moment to engage with leaders in medicine and policymakers to make progress on two of our most important goals: medical education and public funding. 

All of that is important, but hardly revolutionary. I think the feeling of uprising during the Kickstarter campaign was about liberation by self-definition. It was thousands of patients saying, I can choose the name I want to call my illness without approval by government fiat. I know what my experience of this illness is, even if it's not reflected in any official case definition. I know what the history of this illness is, even if the media never reports it. And I can take it upon myself to educate others and make the world a little more sane, even if the institutions that are meant to serve us continue to perpetuate thirty years of insanity. That, I think, was what the uprising was and will be about. 

Which is not to say that transforming medicine and the politics of this illness is not crucial. Rather, it's important to remember that they are not the only spheres.

5) The name "chronic fatigue syndrome" is generally considered pejorative by the ME/CFS community. If HHS gave you the power to change the name to anything you would like, today, what name would you choose? 

Gosh. Myalgic Encephalomyelitis (ME) is probably the name I would choose. It's not perfect, but it describes at least my presentation of the disease pretty well. It's a name that connects it to its pre-Incline Village history. It's Latin, so it sounds suitably intimidating. 

If I were going for something a little more modern, I might choose Acquired mitochondrial and immune deficiency syndrome (AMIDS).

Any name with the word fatigue would be out. Can we please have a funeral for fatigue?

Note: You can stay up to date on the progress of Canary in a Coal Mine here.

Wednesday, August 20, 2014

Do Gut Bacteria Rule Our Minds? Cravings, Weight Gain, and Bugs in ME/CFS

Feed me, Seymour. Feed me!
Every once in a while, I come across an article that inspires an "Aha!" moment. The article below is one of them.

Researchers from UC San Francisco have discovered that not only do those trillions of bacteria that live in our guts influence our mood, they can choose what we eat.

Food cravings, especially for sugar, are common in ME/CFS. Formerly, this was chalked up to an overgrowth of Candida, a yeast that thrives on sugar. Dr. Carol Jessop found that after putting her CFS patients on anti-yeast medication, as well as an anti-Candida diet, they made considerable improvement. John Rutter, a well-known composer and ME patient, reported that an anti-Candida regimen was the turning point in his illness.

But, what if the picture is more complicated? What if gut bacteria also play a role in the symptomology of ME/CFS?

Nearly 20 years ago, Lauren Gellman (co-author of Chronic Fatigue Syndrome: A Treatment Guide), and I conducted a survey. Among the questions we asked ME/CFS patients was whether they had recently been treated for infections. Every single one of the respondents answered that they had taken long-term antibiotics prior to contracting ME/CFS.

Antibiotics have saved millions of lives, but, as Oakland, CA gastroentrologist and fecal transplant proponent Dr. Neil Stollman points out, "antibiotics are a scourge." By altering the microbiome with antibiotics, the body's immune system is compromised. And with the proliferation of unhealthy bacteria in our guts, we are prone to inflammation, which can lead to autoimmune disease and colitis. We are also prone to an overgrowth of bacteria in the small intestines known as SIBO, or small intestine bacterial overgrowth. 

Dr. Cheney has proposed that the majority of patients with ME/CFS suffer from SIBO. The symptoms of SIBO include every GI symptom you can think of -  including IBS - as well as exhaustion, insomnia, night sweats, brain fog, muscle weakness, flu-like symptoms, muscle aches, and a horrible night-time malaise. Among gastroenterologists, the cause of SIBO is recognized as antibiotics, which, like the hair of the dog that bit you, are also used to treat SIBO (Xifaxan is preferred).

The test for SIBO is the lactulose breath test. After refraining from eating sugar and milk products, both of which feed the overgrowth, a small amount of lactulose (a synthetic sugar which acts as a mild laxative) is administered. The gases that are produced - methane and hydrogen - are then measured. In simple terms, the more gas produced, the more severe the infection. (You can order this test without a prescription, and administer it yourself.)

So, the question is, what do you crave? Do you crave ice cream, sweets? And, is it you craving those foods, or is it the overgrowth in your small intestine? Nearly all physicians who treat ME/CFS recommend the elimination of sweets. Perhaps the bugs in your gut provide an explanation for why sweets make patients feel worse - and why we crave them.

Even if the elimination of sweets and milk products from your diet doesn't cure you of ME/CFS, there are definitely a few trillion good reasons to refrain from eating them.
____________________________________________

Do gut bacteria rule our minds? In an ecosystem within us, microbes evolved to sway food choices

By Jeffrey Norris 

Press Release: UCSF, August 15, 2014. It sounds like science fiction, but it seems that bacteria within us -- which outnumber our own cells about 100-fold -- may very well be affecting both our cravings and moods to get us to eat what they want, and often are driving us toward obesity.

In an article published this week in the journal BioEssays, researchers from UC San Francisco, Arizona State University and University of New Mexico concluded from a review of the recent scientific literature that microbes influence human eating behavior and dietary choices to favor consumption of the particular nutrients they grow best on, rather than simply passively living off whatever nutrients we choose to send their way.

Bacterial species vary in the nutrients they need. Some prefer fat, and others sugar, for instance. But they not only vie with each other for food and to retain a niche within their ecosystem -- our digestive tracts -- they also often have different aims than we do when it comes to our own actions, according to senior author Athena Aktipis, PhD, co-founder of the Center for Evolution and Cancer with the Helen Diller Family Comprehensive Cancer Center at UCSF.

While it is unclear exactly how this occurs, the authors believe this diverse community of microbes, collectively known as the gut microbiome, may influence our decisions by releasing signaling molecules into our gut. Because the gut is linked to the immune system, the endocrine system and the nervous system, those signals could influence our physiologic and behavioral responses.

"Bacteria within the gut are manipulative," said Carlo Maley, PhD, director of the UCSF Center for Evolution and Cancer and corresponding author on the paper." "There is a diversity of interests represented in the microbiome, some aligned with our own dietary goals, and others not."

Fortunately, it's a two-way street. We can influence the compatibility of these microscopic, single-celled houseguests by deliberating altering what we ingest, Maley said, with measurable changes in the microbiome within 24 hours of diet change.

"Our diets have a huge impact on microbial populations in the gut," Maley said. "It's a whole ecosystem, and it's evolving on the time scale of minutes."

There are even specialized bacteria that digest seaweed, found in humans in Japan, where seaweed is popular in the diet.

Research suggests that gut bacteria may be affecting our eating decisions in part by acting through the vagus nerve, which connects 100 million nerve cells from the digestive tract to the base of the brain.

"Microbes have the capacity to manipulate behavior and mood through altering the neural signals in the vagus nerve, changing taste receptors, producing toxins to make us feel bad, and releasing chemical rewards to make us feel good," said Aktipis, who is currently in the Arizona State University Department of Psychology.
In mice, certain strains of bacteria increase anxious behavior. In humans, one clinical trial found that drinking a probiotic containing Lactobacillus casei improved mood in those who were feeling the lowest.

Maley, Aktipis and first author Joe Alcock, MD, from the Department of Emergency Medicine at the University of New Mexico, proposed further research to test the sway microbes hold over us. For example, would transplantation into the gut of the bacteria requiring a nutrient from seaweed lead the human host to eat more seaweed?

The speed with which the microbiome can change may be encouraging to those who seek to improve health by altering microbial populations. This may be accomplished through food and supplement choices, by ingesting specific bacterial species in the form of probiotics, or by killing targeted species with antibiotics. Optimizing the balance of power among bacterial species in our gut might allow us to lead less obese and healthier lives, according to the authors.

"Because microbiota are easily manipulatable by prebiotics, probiotics, antibiotics, fecal transplants, and dietary changes, altering our microbiota offers a tractable approach to otherwise intractable problems of obesity and unhealthy eating," the authors wrote.

The authors met and first discussed the ideas in the BioEssays paper at a summer school conference on evolutionary medicine two years ago. Aktipis, who is an evolutionary biologist and a psychologist, was drawn to the opportunity to investigate the complex interaction of the different fitness interests of microbes and their hosts and how those play out in our daily lives. Maley, a computer scientist and evolutionary biologist, had established a career studying how tumor cells arise from normal cells and evolve over time through natural selection within the body as cancer progresses.

In fact, the evolution of tumors and of bacterial communities are linked, points out Aktipis, who said some of the bacteria that normally live within us cause stomach cancer and perhaps other cancers.

"Targeting the microbiome could open up possibilities for preventing a variety of disease from obesity and diabetes to cancers of the gastro-intestinal tract. We are only beginning to scratch the surface of the importance of the microbiome for human health," she said.

The co-authors' BioEssays study was funded by the National Institutes of Health, the American Cancer Society, the Bonnie D. Addario Lung Cancer Foundation and the Institute for Advanced Study, in Berlin.

Journal Reference: Joe Alcock, Carlo C. Maley, C. Athena Aktipis. Is eating behavior manipulated by the gastrointestinalmicrobiota? Evolutionary pressures and potential mechanisms. BioEssays, 2014; DOI: 10.1002/bies.201400071

Friday, August 15, 2014

ME/CFS - Dr. John Richardson and the Enterovirus Connection

The late Dr. John Richardson was a family physician who practiced in Newcastle, UK. For more than 40 years, Dr. Richardson tracked his patients, taking detailed histories, documenting their illnesses, and performing autopsies on those who died. These records provided the basis for his book, Enteroviral and Toxin Mediated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Other Organ Pathologies, which is regarded as one of the most valuable medical compilations in the field of ME/CFS.

Early in his practice, Dr. Richardson realized that enteroviral infections were endemic among his patients, and that not only did they spread from one family to another, they were transmitted from one generation to the next. Out of 7000 patients who contracted viral illnesses, 1780 went on to develop pathologies - 894 had subsequent organ pathology and 111 died. The causes of death were cardiac failure, carcinomas, and other organ failure.

While all of these deaths were attributed to their proximate causes (heart attack, cancer, etc.) Dr. Richardson showed, through autopsy results, that the underlying pathology was caused by enteroviruses, which were still live and replicating in the affected organs years after the initial infection had resolved.

Dr. Richardson noted that roughly 20% of those affected by enteroviral infections (primarily coxsakie virus) developed ME. Because of his diligence, knowledge, and powers of observation, Dr. Richardson soon became one of the world's foremost experts in the disease.

Dr. Richardson's book is not designed for the layperson, which makes for difficult reading. But the information it contains is worth the effort.  Below is the section on diagnosing ME, excerpted from Enteroviral and Toxin Mediated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Other Organ Pathologies, CRC Press; 1st edition (August 15, 2001).

One can only hope that Drs. Cheney, Peterson, Bell and other physicians who have assembled years of data from thousands of ME/CFS patients will undertake to make their observations and clinical data available to the public, as Dr. Richardson has done. 

You can find links to Dr. Richardson's papers and presentations here.

___________________________________________


MYALG1C ENCEPHALOMYELITIS

Nowhere is a variety of systemic symptoms seen more often than in myalgic encephalomyelitis. While it is a defined entity, other organ pathology is not infrequent and can obscure the picture. In this series about 25 percent also developed other antibodies, and antithyroid an­tibodies occurred in about 20 percent of cases. A lecture given at Cambridge in 1990 summarizes this syndrome (Nightingale Re­search Foundation, 1991).

Much has been written on the subject. It has been treated as a myth, or as a single entity that was then claimed by some to be psychiatric or by others to be organic in origin. In the first group, labels were ap­plied ranging from depression to hysteria while in the second, valid observation as well as vague hypotheses are still the order of the day. This merely illustrates the limitations of the medical mind in fully ex­plaining the fundamental pathology of all illness.

The observations in the following sections are the result of contin­uous follow-up and analysis of sequential illness in patients varying in situation and time over a period of forty years.

Prevalence and Clinical Diagnosis

As with poliomyelitis, surveys have shown ME to be epidemic, endemic, and also sporadic. It may follow an acute viral illness such as Bornholm disease, pericarditis, labyrinthitis, or meningoencephalitis. A more vague flulike illness with chest or bowel disturbance may be the harbinger of a more insidious onset. Apparent malaise not only fails to end but becomes more defined, developing symptoms such as anomia or severe concentration difficulty in a previously highly accomplished person who now cannot recall a paragraph even after reading it several times. Muscle power may not appear to be affected, but if examined carefully, softened and very tender areas may be demonstrated. Muscle jitter is a feature in 25 percent of these cases. 

This can be shown by seating the patient on the examination table and asking him or her to raise and lower the lower leg, whereby the jitter is easily seen. Concomitant myocardial or endocrine gland dysfunction also occurs, but if these resolve, the physician may be very frustrated to find that the patient is still ill. The graphs in Figure 3.12 show relative prevalence, and it is apparent that females do not predominate as some have thought, given the overall CNS sequelae to viral illness. Since these graphs were developed, the absolute number of cases being considered has risen, but the percentages have remained unchanged.

I devised the scoring chart shown in Table 3.3 in the early 1960s to summarize the symptoms that were recorded by patients in their own written histories of this illness. There were approximately 300 such written histories, and the symptoms that form the basis of this chart occurred in 80 percent of the cases.

If the patient qualifies for the diagnosis for each question, then the score indicated in the third column is recorded in the fourth column. The sum of the values in this fourth column then represents the patient's overall score.

Table 3.3 ME scoring chart

1. Has there ever been any evidence, either illness or titer, of past viral infection? 1

2. FATIGUE: (a) Are you less than 33% efficient per full day (including hobbies after work, etc.) 2
(b) Do you need a period of bed or settee rest: during each day, or 3 on 2 or 3 days a week? 2

3. Have you excessive fatigue after work effort? 2

4. Do you have nocturnal sweats or cold feelings? 2

5. EVIDENCE OF DISTURBED MENTAL ACTIVITY
(a) Do you have difficulty finding the correct words? 1
(b) Can you write a long letter without your handwriting deteriorating? 1
(c) Do you tire if you have to talk for long? 1

6. FAINT ATTACKS (VASOMOTOR CNS INSTABILITY)
(a) Do you tend to have faint attacks:
and lose consciousness? 3
or: without loss of consciousness but have to sit down or lie down? 2

7. Do you feel fatigued on waking? 1

8. Can you stand a lot of “chatter” (hyperacusis)? 1

9. Do you have cold or numb feelings in your extremities of face? 2

10. Is your gait consistent with your age or is it that of a person much older or unsteady? 1

Answering these questions, therefore, yields a global view of the symptoms that occur in ME. An overall score of fifteen or more is highly suggestive of the condition and can be broken down into four sections:

1. Fatigue. This can be either central fatigue or muscle fatigue. Central fatigue is probed in question 7 while peripheral fatigue is indicated by questions 3 and 10. The resulting combination would be suggested by question 2 (a) and (b). Muscle fatigue is known to be related to an excess of lactic acid after work effort. In this condition, however, excessive activity is usually reflected the following day, and it may take days for the patient to recover.

2. Mental Activity. Question 5(a) indicates anomia, which is a very well recognized symptom in this condition, while question 5(b) reflects the motor fatigue involved in transposing verbal to written language. This may indicate the involvement of supra- and infrasensorial mechanisms within the brain and may also be evidenced by a positive response to question 5(c).

3. CNS Instability. This is seen in varying degrees of severity in 80 percent of the cases, hence the two grades of response to question 6(a). The test for the former is performed by placing the patient prone on the examination couch and performing serial ECGs and carefully monitoring blood pressure. The backrest is then raised to 45° and blood pressure recorded at two-minute intervals. If any change in heart rate is detected, then further ECGs are performed. After five minutes the patient is asked to stand upright, and further blood pressures are recorded. In only 10 percent of cases is there a significant change in heart rate, but changes in blood pressure as indicated usually occur. In the supine position, the blood pressure normally is quite low but in the 45° position often rises by 50 mm systolic and 20 mm diastolic. When the patient assumes the erect position it again falls to levels either equal to or below those recorded for the supine position. Only in the small minority of cases with a concomitant bradycardia did a collapse occur, but, as indicated, many of the other patients felt weak and had to sit down.

Question 8 again alludes to the central fatigue in which the patient has a limited ability to absorb information. On occasion, certain tones become extremely painful, constituting the "tensor tympani" syndrome.

Question 9 relates to vasomotor instability reflected in temperature or sensory changes, which again may reflect abnormal reception in the hypothalamic nuclei.

4. Overall Result. Finally, question 10 is obviously the result of a conglomeration of the other symptoms.

The Differential Diagnosis of Myalgic Encephalomyelitis

Obviously the history obtained is of first importance. In the cases so far, it is striking how consistent the symptoms are that characterize this condition. Moreover, when the cases are studied in retrospect, the following fact emerges. Approximately 7,000 cases of viral illness over four decades have been listed and broken down into five groups. The first contained over 5,000 cases who had had quite a severe ill­ness but recovered without sequelae within six months. However, just under 20 percent of this group did have a recurrence of enteroviral or­igin at a future date but not always with the same syndrome, e.g., one case had Bornholm disease and the second attack was viral meningi­tis. These were chiefly enteroviral cases, and it is interesting that no one in Group 1 progressed to postviral illness, be it ME or another syndrome. However, of all 7,000 cases, 1,670 did have postviral syn­dromes, some from the original attack and some who had a recurrent illness (Group 2).

It is of interest to note that some of the initial illnesses appeared to clear completely (e.g., meningitis or Bornholm disease), while others (e.g., pericarditis, myocarditis, nephritis, etc.), could remit or pursue a more chronic course. A lifelong syndrome (e.g., diabetes) might en­sue in a small minority. Yet again, in a small minority with acute on­set there are those who do not make a recovery and develop ME. The difficulty of diagnosis is compounded by the fact that in many cases, none of the severe initial syndromes may have presented. In fact it might be assumed that a severe, acute illness provoked a host re­sponse with complete remission, while a subacute illness did not. However, there is an overlap, and as usual it is probably too facile to be dogmatic.

Thus, for the purpose of differential diagnosis two main conditions should be considered, namely, the pathogenic agent and the organ af­fected. The host response should also be seen as a third condition that vitally affects these two factors. Considered separately in the context of the condition studied here, this can be summarized as follows.

Pathogenic Agent

Pathogenic agents may be organic or inorganic. In the present con­text most organic pathogens are viral, but, as shown later, this is not exclusive of other agents. Most of the inorganic agents are varying chemical toxins, and of these the insecticides used on farms for crops or animals, or in the home for insects on plants and occasionally for lice on children or pets, together with wood preservatives used in the home or at work, are the most common in the United Kingdom. This is not exclusive and could be extended to the ingestion of toxins on food or in water, etc. We have recorded such cases, which have caused profound paresis in some cases and in others subclinical weakness that could be classified as ME.

Organs Affected

It is obvious that either organic or inorganic toxins may have an ef­fect on varying organs and thus give rise to varying syndromes de­scribed under various titles. This depends not only on the toxin but also on the host.

Host Response

Host response is a crucial consideration relating to the previous considerations. In the case of organisms, be they virus or others, it can be shown that the host response may determine the degree as well as the site of infection. Some patients may be immune to certain or­ganisms while others may be susceptible. The degree of immunity may vary over months or years and also be suppressed by varying fac­tors (e.g., toxins), which then act as cofactors. While we are aware of this, other host factors that appear to influence organ susceptibility are not so well understood. It is interesting that antibodies may be general and circulating in serum or they may be purely local.

I showed this thirty years ago while investigating cases of infertil­ity, where sperm subjected to only one minute of contact with cervi­cal mucin died, but would survive a whole night in the female's serum. When a viral infection occurs in a family, one member may have cardiac and another CNS involvement, while the others remain free of illness. Thus a single agent may be responsible for differing syndromes. This may be explained by "local cell surface" acting anti­bodies with specific organ-protective qualities, but these antibodies also can vary over the years. Taking this into account, the differential diagnosis should not be taken to imply a different etiology. Another corollary is that identical causes, with differing syndromes, would re­spond to the same treatment. However, bearing this in mind, it is also important to see that multiorgan involvement may occur due to infec­tion; also, the involvement of one organ may have effects on other organs. 

This is well demonstrated in the hypothalamic region, which has a wide supervisory role, operated via neuronal and humeral mecha­nisms. Examples of these mechanisms can be seen more centrally in pituitary regulation, with its further effects from the thyroid, adre­nals, etc. to the apparently more distant regulation of bowel motility.

These factors make an exclusive title for an illness difficult. In dia­betes there is not just pancreatic involvement, because the Kimmel-stiel-Wilson syndrome, which involves multiorgan sequelae, shows how diffuse the effects may be. Also in anterior poliomyelitis other neurological involvement takes place apart from that in the motor system. Autonomic disturbance is perhaps the most frequent, and hy­per- or hypohidrosis, systemic hypertension, and gastric hypomotility or atony with constipation, as well as sensory loss due to the posterior roots of the cord being affected, have all been recorded (Plum, 1956). In my series, cerebellar ataxia, papilloedema due to increased intra-cranial pressure, and Reye's syndrome have also occurred in the acute infective stage of viral illness, and these conditions were also reported by Curnen and colleagues (1961) and Brunberg and col­leagues. The progression from the acute to the more chronic stage in all these diseases may not follow an orderly pattern either in time or organ location, which may be diffuse, and this is reflected in the ME syndrome.

We can briefly consider some of the factors involved in virus-host in­terchange. Viruses are intracellular obligate parasites, and the host mechanism has to recognize this if it is to deal effectively with the virus. The T cell population only recognizes antigen when it is displayed on cell membranes along with a cell marker. These markers belong to the major histocompatibility group (MHC). The T cells, if thus primed to the viral antigen, recognize and bind to it and the MHC molecule and commence to produce interferons (IFNs). Anti­bodies, complement, and polymorphonuclear leukocyte deal with circulating extracellular infection, while T cells, IFNs, macrophages, and NK cells deal with intracellular infection—in this case viral. This mechanism can be thwarted by so-called antigenic shift or drift. In the first, there is movement of genomic material, while in the second, there is a swapping of genetic material from reservoirs of different viruses. This could explain the way in which one infection reactivates a latent strain.

However, both local and systemic antibodies attempt to block the rep­lication and spread of viruses, either circulating or being shed from a cell that has been infected and killed. IgG is the most prevalent anti­body of the immunoglobulin system and is a potent opsonizing agent. The complement system of serum proteins is activated by IgM and later by IgG. They opsonize target cells for the phagocytes, which are then bound by IgM or IgG, and this is the classical pathway. Cells synthesize interferon when infected by virus; it is secreted into extracellular fluid and binds to adjacent cells. Interferon-alpha is de­rived from lymphocytes and interferon-beta from fibroblasts and other cell types. The IFNs acton certain cell genes that either catalyse or retard factors responsible for protein synthesis, which in turn re­duces mRNA translation, while another factor results in the degrada­tion of host and viral mRNA. The total result is to establish a sort of cordon of uninfectable cells around the virus. Thus, viral replication is inhibited. In mice if interferon is inactivated by an antiserum, they succumb to a small viral dose. IFNs have at least three roles—to kill vi­rus, to inhibit host cell division, and to modulate the activity of NK cells.

In ME, as with certain other viral illness, T cell dysfunction occurs, and Hamblin showed an increase in suppressor activity with T cell sup­pression of in vitro synthesis by normal B cells. Also, Caligiuri (1987) found 73 percent of ME cases had a decrease in the number of NK cells, and the T3 negative subset was reduced in 50 percent. This is in­teresting in the light of the foregoing remarks, and CD4 T cells migrate from blood to tissues in virus-induced disease as viruses are intra-cellular obligate parasites. The persistent viral infection cycle is com­plex.

There may be a primary acute illness that would qualify for a defi­nition, or it may be followed by a series of other symptoms that would require further definition. In some initial infections the primary stage may not be evident, including diseases as diverse as TB and even AIDS, among many others. All of this is true of ME. Thus a search for the origin may not be helpful and the continuing multiorgan effects may be confusing. Investigations for the continuing reason for this are a challenge. In considering these problems, the differential diag­nosis of the primary illness is obviously important, and in my series some of the final diagnoses arrived at are discussed here.

Acute illness may be as follows: Bornholm disease; viral meningi­tis or encephalitis; labyrinthitis; cerebellar syndrome; hand-foot-and-mouth disease; GI syndromes; pancreatitis; viral pneumonitis; spinal radiculopathies; nonspecific influenza-type febrile illness. In consid­ering the differential diagnosis, the following section is a brief and in­complete survey of variables.

Acute Presentations
• Bornholm disease, which may mimic gallstone or renal colic, torsion of bowel and pleurisy, or even myocardial infarction.
• Meningitis and encephalitis, which may be bacterial.
• Labyrinthitis is viral in most cases, but may mimic a basilar ar­tery insufficiency syndrome.
• Cerebellar syndrome may again mimic a vascular-mediated syn­drome.
• Hand-foot-and-mouth disease, with or without iritis, is usually viral, but erythema chronicum migrans (ECM) must be kept in mind as Lyme disease can closely mimic ME. Ixodes dammini, I have been told, exist in deer as near my area as Sherwood Forest. I have had one case.
• G.I. syndromes, e.g., gastroenteritis and also pancreatitis, may also be bacterial, toxic, or viral. Radiculopathies also occur and may have varied etiologies, but a viral cause should always be considered.
• Flulike illnesses may have varied and obscure causes. Serological titers often are not performed, although it may well be wise to do so for future reference, in case chronic sequelae occur.

Chronic Sequelae

The more challenging task involves chronic sequelae, which is particularly true in ME as the effects may be neurological, hormonal, autoimmune, or myalgic in varying degrees, and the latter may in­volve the myocardium. All of these may be discrete but also may oc­cur as an additive in ME, which of course tends to cause problems. Moreover, the difficulty lies in the fact that the pathogenesis of the acute stage might not have been accurately defined. Because of my interest, serological titers were usually performed on more than one occasion in those presenting with a well-defined illness as shown in the previous list, but some patients with a flulike illness did not pres­ent until secondary effects developed. In these, the definitive liters may have fallen and culture was often negative, but the VP1 test de­veloped by Professor Mowbray has proved of considerable value for suggesting ongoing enteroviral infection.

Conditions considered in this work, which again are not exclusive:

Brucellosis—This may be difficult to define, and only one was proven in this series. However, it can produce all the acute and chronic symptoms alluded to in this work. In the CNS, diverse spinal and cerebral syndromes occur, sometimes with paranoid delusions. Endocarditis may cause emboli with remote effects. 

As with toxins, this should be considered in those who work with animals. However, the ESR is high, and lesions may de­velop that mimic sarcoidosis. The ELISA IgM in the acute stage or IgG in the chronic stage should be assayed. Lyme disease—As with brucellosis, it is difficult to prove in the chronic stage, and I have only seen one, which was considered but never proven. Lyme disease causes ECM skin lesions in the acute stage, which may be confused with hand-foot-and-mouth (HFM) disease. In the later stage neurological, cardiac, and arthritic condi­tions may follow, as with viruses. Lyme disease, however, is due to a spirochete transmitted by ixodid ticks.

Tuberculosis—One was referred as ME but had a very high ESR, which is most unusual in ME. TB may have an obscure location, as was the case here, which was eventually shown to be renal. Carcinomas—Again, they usually have a high ESR. This is dealt with in another context in Chapter 8 and may be primary or se­quential.

Endocrine—This is dealt with in Chapter 5, but thyroid antibod­ies as well as diabetes can develop in these patients and be a complication in the ME syndrome.

CVS—Pericarditis, perimyocarditis, and myocarditis have all been noted in this series as discrete or additive. The additive cases still manifest the symptoms of ME after the cardiac condition resolves. CNS—A list of other syndromes that have followed well-docu­mented viral illness has been listed, but most, in my experience, can be excluded by careful examination, using MRI scans, etc.

Auto-immune—This is a difficult area, and autoimmune sequelae are well recognized following viral infection. However, they should be differentiated clinically as a separate entity or as an additive factor in ME.

Toxins—A small number have been seen and serologically proven. They can give rise to serious illness and should be borne in mind. They do have a depressive effect on bone marrow, which also occurs with viral infections. Jacobson and colleagues published the results of a good study in 1987. In these cases the serum folate was low, below 3 ug/L, which is the lower limit of normal. They reported that in half to three-quarters of all such patients, an unexpectedly low serum folate was found. In twenty-nine patients it was as low as 1.6 ug/L. Patients with nor­mal values had on average 5.8 ug/L. Folate is required for hemopoiesis and for the conversion of uridylate to thymidylate of DNA and for all other cells and tissues. It is necessary for the synthesis of purine rings and of RNA and proteins. All infection causes a bimodal response of the immune system in cellular multiplication and synthesis of immunoglobulins, both of which are folate dependent. Repair in pulmonary and skin lesions makes demands on folates also.

A high incidence of folate deficiency was found in those who had viral skin rashes. Also, Behan and colleagues (1985) noted this folate lack in cases of ME. However, thirty or more years ago I noted the association between folate levels and fetal abnor­mality, particularly in tissues deriving from ectoderm. Not infre­quently, this was also linked with a viral infection at or just before the time of conception. It is also relevant that insecticides have been incriminated in fetal abnormality. The question then arises as to whether virus or toxin lowers the folate to danger lev­els, or whether a low folate level allows the body to be suscepti­ble to infection. I suspect the former, but it still begs the question—Is it the virus or the low folate that actually mediates the neonatal pathology or adult illness?

The question is sometimes asked, "Do women with ME have an in­creased risk of bearing children with an abnormality?" The simplistic answer is "No." However, I did a study in a group of women of child-bearing age (seventeen to thirty-seven years) who had a viral illness with at least an eightfold rise in Coxsackievirus titer and had become pregnant or had developed the illness during the last trimester. In that study, 68.2 percent had normal children, but there was a rather high number, 31.8 percent, which were abnormal. 

Broken down, the abnor­mal cases included: two aborted (3.0 percent); six stillbirths (9.1 per­cent); eleven fetal abnormalities (16.7 percent); and two babies who died from cardiac complications (3.0 percent). However, I emphasize that this is not related to ME but does relate to the pathogenicity of the enteroviral group of viruses.

The important consideration, however, is that the syndromes out­lined may all cause chronic illness, and some may actually coexist with ME and have the same etiology, while others may mimic the condition. A very careful history written by the patient, which both saves time and is much more reliable than question and answer (which may be bi­ased), should, in most cases, define the issue. The exercise can alert us to the possibility of occult infection in conditions that may cause chronic malaise. The persistence of spirochetes and viruses should by now be well recognized, but the investigatory proceedings needed in some cases, in my opinion, require more intensive laboratory investiga­tions.

It may be helpful to review the "response to stress" and see the inter­play of neurological and hormonal activity, which can be seen as an "efferent" response by the host. By the same token, there is an "affer­ent" result from the response of the immune system. This integrated function determines the whole pathological scenario, felt by the patient and perhaps perceived by the medical investigator, but this depends upon signs, which are often less obvious than symptoms.

Friday, August 8, 2014

Sophia Mirza and Severe ME/CFS




August 8 is the birthday of Sophia Mirza, a British woman who died of ME at the age of 32.

Sophia contracted ME in 1999 after a "flu."  She never recovered her health, and by June 2000 was bedbound. Like many patients with severe ME, Sophia could not tolerate light, touch, or sound. She developed sensitivities to foods, and was unable to read, write, or even bathe herself. In response to her mother Criona's request for help, Sophia's GP, Dr. Firth, suggested that Sophia had made herself ill so she could "get attention."

Over the course of the next three years, Criona's attempts to have her daughter treated for ME were repeatedly thwarted. Dr. Firth referred Sophia to a psychiatrist, Dr. Baginski, who recommended a clinic that supposedly treated ME. When Sophia discovered that the treatment consisted of Graded Exercise Therapy, she declined.

At that point, the physicians involved with Sophia's case began to threaten Criona.
"I was told that if Sophia refused to go to Oldchurch Hospital in Romford, or if she did not recover within the following 6 months, that she would be sectioned under the Mental Health Act, then added that if I tried to stop this, then he, Dr. Baginski, would go to the courts to have me removed as the nearest relative. Furthermore, if I did not open the door when they would come to take Sophia away, that the police would be called to “smash the door down”. When I asked how much better Sophia would get by these proposed actions, the reply was given that it was “none of your business, that it was for the courts to decide”. The psychiatrist wanted to arrange for me to see a psychologist so that I could understand the good, that he, Dr. Baginski, was doing to Sophia. I refused." (Sophia and ME)
In July 2003, Dr. Baginski made good on his threat. The police smashed down the door and took Sophia to a local mental hospital, where she was placed in a locked room within a locked ward. During the weeks she was confined to the mental ward, Sophia did not receive even the most basic care. Her sheets were not changed, her blood pressure was not taken; she was never washed, and her bathroom was never cleaned. By the time Sophia was  released, the damage had been done. Sophia descended into a "hell-hole" from which she never recovered.

On November 25, 2005, Sophia Mirza died. The official cause of death was listed as acute aneuric renal failure (failure to produce urine) due to dehydration as a result of Chronic Fatigue Syndrome. A subsequent autopsy revealed that 80 % of the dorsal root ganglia of Sophia's spine were damaged. (This is consistent with active herpes infection.) The dorsal root ganglia are responsible for conveying sensory information to the brain, so damage to the ganglia would produce pain, sensitivity to sound, light, touch - all the hallmark symptoms of severe ME.

Other Sophias

Sadly, Sophia's case is not unique. Many patients diagnosed with ME or CFS are not only labeled as psychiatric cases, but are forcibly removed from their families to undergo "treatments" that only make them worse.

In 1986, Ean Proctor, a 12-year-old boy living on the Isle of Man, fell ill with severe ME. By 1988 he was confined to a wheelchair and could no longer speak. In spite of his diagnosis of ME, Ean was removed from his home after Dr. Simon Wessely decided that Ean was mentally ill. He was taken to a psychiatric ward in a hospital, where the staff told the boy that his parents were" letting him die." Because they did not believe he was unable to get out of his wheelchair, they let him soil himself rather than take him to the bathroom. Then they pushed him into a swimming pool, in the belief that he was faking his paralysis. Ean promptly sank to the bottom. After five months of legal battles, the Proctors finally got their son back, but not until they had nearly bankrupted themselves with legal costs.

Karina Hansen, a Danish woman, is still locked in a mental ward in Denmark. After more than a year of "treatment" her health is worsening, but the state will not release her, in spite of concerted national and international efforts.

David, a German boy who was struck with severe ME at the age of 15, was taken to a mental ward after his physician determined that his sensitivities to noise and light were psychogenic. At the clinic, he was forced to exercise. David was "traumatised" by the experience, and never recovered. At age 17 David died of a brain hemorrhage.

And on the home front, the recent case of Justina Pelletier's incarceration in a mental ward made national news. Her physical deterioration while locked in the ward could be documented, because the press got involved. Justina became a cause célèbre, to the point that two Congressmen have introduced a law that would prevent medical experimentation on children in hospitals.

These cases, while striking, are not isolated. How many ill children - and adults - have been stuck away in locked mental wards, to be abused, drugged, and ignored? And how many people have died, after years of medical neglect, from complications due to their illnesses?

What Really Killed Sophia Mirza

When doctors are unable to make a diagnosis they almost always place the blame on their patients. Perhaps in a society in which doctors were less arrogant, this would not be the case. But in our society - which has given almost god-like status to physicians - if a patient does not get well, it is because the patient does not want to get well. The subsequent psychiatric diagnoses saddled on these patients are numerous - somatoform disorder, factious disorder, Munchausen's - but they all amount to "I cannot figure out how to fix you, therefore you are to blame."

Once people are branded with a psychiatric disorder, they cease to be human beings. Their civil and legal rights are revoked, and they can expect no compassion. Psychiatric patients are isolated from friends and family, who are almost universally considered "enablers." They are drugged into a state of compliance. And rather than attend to their needs, which are considered part of their "illness," staff members can, on doctor's orders, legitimately engage in active abuse, which is justified by relabeling it as "therapy."

Cases like Sophia's, or Ean's, or Karina's, or David's, or Justina's raise some very important questions, one of which is "Should anybody, under any circumstances, be treated like that?"

Another question is "Who decides what is real?" What special training qualifies social workers, school nurses, and petty bureaucrats to determine what is and is not real? For that matter, which course in medical school trains physicians in the finer points of reality?

Sophia's decline can be directly attributed to active medical neglect. But as long anyone in an official capacity is allowed to make the determination of what is real and what isn't, the physicians and bureaucrats responsible for contributing to Sophia's demise will never be held accountable.

Who Decides What is Real?

The idea that an illness is not "real" arises from the concept that people whose illnesses cannot be easily diagnosed by physicians must be faking it. There is an inherent problem with this line of reasoning.

With a few exceptions, mental illnesses are "all in your head." There is no identifiable physical cause for the majority of them. They cannot be confirmed by a medical test, and there is no cure. The treatments are, at best, palliative, and, at worst, fatal.

Yet, insurance companies pay for treatments for mental illness. Why do they spend money on illnesses that are imaginary? And why do therapists have a 991-page manual describing these "not real" illnesses? If all one has to do is convince the patient that he or she does not have a real illness, why are there hospitals, clinics, hefty fees, and a pharmaceutical industry built around these illnesses?

Furthermore, if these illnesses are "all in your head" then why aren't evil eye and spirit possession included in the DSM V as well? If physicians actually believe that physical symptoms can somehow be created by the mind, why isn't there a diagnostic code for voodoo? Are there levels of unreality in which some unreal illnesses are more unreal than others?

Even more bizarre is the notion that if you believe that you have an organic (real) illness, but the doctor can't find a test to confirm it, then your belief that your illness is organic proves that it isn't.

That brings us back to Sophia Mirza. Sophia was diagnosed with ME, a neurological illness her doctors did not believe was "real." Eventually, Sophia's "unreal" illness killed her. Her autopsy revealed that there had been a real problem all along. Yet nearly ten years after Sophia's death, doctors still don't believe in the reality of ME/CFS. Nor will they ever as long as cultural myopia is permitted as an acceptable basis for medical opinion.