Showing posts with label diagnosing CFS/ME. Show all posts
Showing posts with label diagnosing CFS/ME. Show all posts

Monday, March 2, 2015

So, what do you think about the new name?

A version of this article first appeared on ProHealth.

Anyone may reprint or repost this article with a link back to the original, and attribution.

By Erica Verrillo

In September 2013, the IOM was contracted by HHS to devise a new definition for chronic fatigue syndrome (CFS), the current CDC definition being considered too broad. It was also charged with providing a new name at its discretion.

The IOM made its recommendations on Tuesday, February 10, 2015 in a report entitled, "Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness.” One of the recommendations of the report was to eliminate CFS and to replace it, as well as myalgic encephalomyelitis, with "systemic exertion intolerance disease" (SEID).

The IOM's report on ME/CFS has generated a tremendous amount of media coverage (Time, CBS, NY Times Blog, The New Yorker), as well as considerable discussion in the ME/CFS community. While many have welcomed the report's emphasis on the serious nature of the disease, there have been some lingering doubts about the appropriateness of the new name.

(You can read and/or download the report as well as watch the video of the announcement HERE.)

A Brief History of the Name “Chronic Fatigue Syndrome”

In 1984, a mysterious illness struck residents of Incline Village, Nevada. At the time it was thought to be caused by Epstein-Barr virus (EBV), the herpesvirus that causes mononucleosis. For several years the disease was referred to as chronic EBV (CEBV). When EBV was disputed as the cause, Steven Straus of the NIH dubbed it “chronic fatigue syndrome” after its main presenting symptom. Straus was apparently unaware when he coined the term in 1988 that the disease already had a name that had been in use in the UK and Europe since 1959, “myalgic encephalomyelitis” (ME).

An outbreak of an illness identical to the one in Incline Village had struck the Royal Free Hospital in 1955. The attending physician of that outbreak was Dr. Melvin Ramsay, a doctor who not only documented the outbreak, but treated those who suffered from the disease for decades. The term he used for the disease was “myalgic encephalomyelitis,” in order to distinguish it from polioencephalomyelitis, the epidemic which had preceded the Royal Free outbreak.

Medical Impact of a Name
What people think we look like.
(Photo from 
thepsychologystudent)


Virtually from the moment of its creation, patients, as well as specialists, voiced reservations about the name “chronic fatigue syndrome.” Not only did the name trivialize an illness that could be devastating for patients, but it departed from medical tradition.

Illnesses are not named after a single non-specific (common to many ailments) symptom. Critics pointed out that there is no “chronic coughing disease” (pneumonia), or “chronic forgetfulness disease” (Alzheimer’s). In addition to these drawbacks, the focus on fatigue drew attention away from one of the cardinal symptoms of the illness, post-exertional malaise (PEM). It also led to confusion and ultimately to the misdiagnosis of patients who had other conditions that present with chronic fatigue, such as MS and leukemia.

What we really look like. (Jessica Taylor)
Public Reaction to SEID

While the ME/CFS community has universally welcomed the abandonment of CFS as a name for the disease, there have been mixed reactions to the IOM’s proposed new name, “systemic exertion intolerance disease” (SEID).

Those who like the new name have offered that “systemic” captures the fact that the disease affects multiple systems, and “exertion intolerance,” or PEM, is one of the cardinal symptoms of the disease. The fact that the IOM has defined the illness as a disease is especially important.

Those who are critical of SEID have pointed out that every disease affects multiple systems, therefore the inclusion of “systemic” is meaningless. They have also pointed out that “exertion intolerance” is non-specific. “Exercise intolerance” - as exertion intolerance is better known in the medical world - is a feature of cardiopulmonary diseases, hypothyroidism, cancer, and many other conditions. To make matters worse, “intolerance” can be easily interpreted by physicians as “aversion,” which increases the likelihood that patients will be referred to therapists and told to exercise. (See my analysis of the report HERE.)

Other Name Choices

Keep in mind that the recommendations of the IOM are not public policy. No federal agency or department is obliged to follow them.

Some of the alternatives to both CFS and SEID that have been suggested are:

Myalgic Encephalomyelitis: This is the long-standing name for the disease.
Cons: 1) CNS inflammation has not been definitively proven. 2) Not all patients experience pain. 
Pros: 1) The fact that inflammation of the CNS has not been definitively proven does not prevent adopting this name for historical continuity, much like the names malaria (which means “bad air”) and cancer (from karkinos, which means “crab” in Greek). 2) The IOM recognized that pain was a definitive symptom of the disease, and that it was experienced in various forms by 94% of patients. 3) Myalgic encephalomyelitis, as opposed to either “chronic fatigue” or “systemic exertion intolerance,” sounds like a serious medical illness. 4) Myalgic encephalomyelitis has been the name for this disease for 60 years.

Ramsay’s Disease: Honors Dr. Melvin Ramsay.
Cons: 1) There already is a Hunt Ramsay Syndrome. 2) The WHO discourages naming illnesses after people.

Pros: 1) There is a longstanding medical tradition of honoring physicians who first describe an illness. 2) Ramsay’s Disease makes no claim about the etiology of the disease, which has yet to be determined.

Nightingale’s Disease: Honors Florence Nightingale, the founder of the Red Cross, and sufferer of a chronic ailment similar to ME.
Cons: 1) Florence Nightingale probably did not have ME, but a chronic bacterial infection. 
Pros: 1) Florence Nightingale is famous. 2) This name skirts the issue of brain inflammation.

Cheney Peterson Disease: Honors the two American physicians who attended the Incline Village outbreak.
Cons: Neither physician has wanted this disease to be named after them. 
Pros: This name skirts the issue of brain inflammation.

Incline Village Disease: Where the illness was formally identified in the US.
Cons: 1) The outbreak in Incline Village was preceded by outbreaks in Los Angeles, London, Iceland, and various other locales, many of which had names associated with them. A clear point of origin is hard to establish. 2) The state of Nevada would not welcome one of their tourist attractions being associated with a disease.  
Pros: This name skirts the issue of brain inflammation.

Why Your Opinion Matters

In a post published on the Oxford University Press blog  Dr. Leonard Jason stressed that input from the community on what to name this illness is crucial. As he has pointed out, names can stigmatize. He proposed that with the publication of the IOM Report we have been provided an opportunity to work together to devise a name that is appropriate.

Adopting an appropriate name for this illness is important because a suitable name is a crucial part of getting recognition, funding, and treatment. As long as this disease is called "chronic fatigue syndrome" no one will take it seriously. No physician will consider it as a potentially life-threatening illness, and no researcher will be able to identify a cohort.

Without a clearly defined cohort of people who actually have the disease (as opposed to people who are chronically tired), there will be no funding, and without funding for clinical trials, there will be no treatment - of any kind.

The IOM got that much right. The question is whether SEID is any better. If it isn't, then we are stuck in the same situation we have been in over the past 27 years of "CFS."

Polls and Surveys

Recent results of polls have not favored SEID. Paradigm Change and MEAdvocacy ran a poll (March 1) that was strongly critical of the IOM's proposed name. Some of the preliminary comments were:
* If you read Ramsay’s definition of ME, it states that ME is multi system disease. This is my experience of the disease. Intolerant indicates that if the patient were given exercise therapy, their tolerance could be improved. The whole name centres around the exercise intolerance view, as CFS centred Round fatigue. There are so any other far more debilitating symptoms to ME and the worse the disease gets, the more symptoms and the more debilitating they are.
* It’s not clearly defined and “intolerance” sounds like exertion is something I’m not interested in as in laziness. I wasn’t lazy before getting this disease and now I don’t know day to day how I’ll feel. If I was a doctor and seeing this name I would think this person has psychological problems. It’s a step up from “CFS” but not by much.
* just change the name to M.E.

Health Rising has conducted a poll as well in which SEID came in last of all preferred names. (Click HERE for the results.)

What do you think?

IOM's name change is not written in stone, It has not been formally adopted by HHS, or by any US Agency. Although the IOM has suggested a WHO code for SEID, the World Health Organization has not yet assigned one.

No matter what you think of the new name, you can still make your voice heard through a variety of ongoing polls and surveys. Some of their results will be distributed to the media, and even more importantly to relevant government organizations (e.g. HHS, CFSAC).
____________________

ProHealth is currently running a three-question poll, "What name would YOU choose for CFS?"

The questions are:
1. Do you have ME or CFS? (Either diagnosis)
2. Do you think CFS should be replaced by a new name?
3. Which name do you prefer for this illness? (Names are listed.)
This poll will be open until March 21. You can take it HERE.

____________________

ME Association has a one-question poll. "Should CFS and/or ME be renamed Systemic Exertion Intolerance Disease (SEID) as recommended in the U.S. Institute of Medicine Report?'

You can take the poll (and see the results) HERE.

____________________

Mass CFIDS and FM Association is running a more comprehensive survey, "What do you think about the IOM report?" 

You may leave as long or short a comment as you wish. The results of this survey will be sent to CFSAC. The deadline is March 20, 2015. Take the survey HERE.

These are the five questions on the survey:

1) What are the positive things in the Report that we can use to move forward?
2) What questions do you have?
3) What goals would you like to see accomplished with regard to this illness in the next 3 - 5 years? Are these goals supported by the Report?
4) What parts of the Report are problematic for you?
5) Do you have other comments you would like to share?


Friday, July 18, 2014

The Diagnosis of Chronic Fatigue Syndrome: An Assertive Approach by Dr. Paul R. Cheney and Dr. Charles Lapp

This paper (below) by Dr. Paul Cheney and Dr. Charles Lapp was written more than two decades ago. It contains detailed descriptions of numerous test abnormalities found in ME/CFS patients, all which can be used for diagnosis.

In spite of the fact that these (and other) objective findings have been noted by specialists for decades, the CDC has not made any of these criteria available to the broader medical community. It is equally as incomprehensible that in spite of these findings - described in great detail in the Cheney/Lapp paper - we now have two federal initiatives involving the diagnosis of ME/CFS, neither of which has taken into account the numerous objective markers for the disease. 

Thirty years after the Incline Village outbreak, the myth still persists that ME/CFS cannot be diagnosed using objective measurements (which are still considered "controversial").  ME/CFS is still described as "mysterious." And it is still a waste-basket diagnosis.

Dr. Cheney and Dr. Lapp were not ahead of their time. The problem is that all of our institutions lag far behind.
___________________________________

The Diagnosis of Chronic Fatigue Syndrome: An Assertive Approach by Paul R. Cheney, MD, PhD and W. Charles Lapp, MD, FAAP

Introduction: The Case for Diagnosis by Objective Criteria

Over the past ten years, a considerable and diverse medical literature has arisen concerning the chronic fatigue syndrome (CFS). Like all medical literature written on an emerging disorder, these published findings include a range of views and some discrepancies.

Systematic errors exist among the tools used to discern differences between CFS cases and "healthy" controls. The central problem, however, is case selection. Many patients with CFS are excluded from studies because they seem "too sick" to have CFS and are perceived as having something else. CFS cases are mixed in with non-cases. Inappropriate controls are sometimes used. Some investigators, aware or unaware of a bias, attract or include in their studies the very patients who best fit their view of CFS. This so-called selection bias can markedly affect the observations of a study. Despite these discrepancies, a more or less consistent pattern of observable abnormalities has emerged and we believe a case definition using objective abnormalities can now be defended.

Having stated the inherent problems with CFS research, we will attempt to defend an assertive approach (i.e.,diagnosis by inclusion) to the diagnosis of CFS using the available medical literature to support it. This is a different approach from just applying the Centers for Disease Control (CDC) case definition, which in essence defines a sign-symptom complex in the absence of a "known medical illness" (i.e., diagnosis by exclusion). The medical evidence cited for CFS asserts that the following are present more or less in every patient during the course of his or her disease: T-cell activation, discrete immune defects, viral activation or re-activation, exercise-related dysfunction, and evidence of brain dysfunction or injury. While none of these tests can stand alone to "diagnose" the illness, an array of these tests can be used to support this diagnosis, given the proper clinical context derived through the application of the CDC case definition. The use of non-specific tests to defend or support a diagnosis is a time-honored tradition in medicine, and the concept is used to diagnose such disorders as multiple sclerosis, lupus erythematosus, acute infectious mononucleosis, and even AIDS.

There are a number of criticisms given for using nonspecific tests in the diagnosis of CFS. They include the following:

(1) We lack a gold standard for determining this disorder and therefore lack a means to test the relative value of certain tests (i.e., false positive and false negative rates).

This is certainly a valid point in confirming a diagnostic test, but it is not a valid criticism in using a non-specific test to support a clinical impression. If a test abnormality has been shown in the medical literature to be associated with a certain disease, such as a positive ANA in lupus, then it is valid test to be used in supporting a clinical diagnosis. Furthermore, as in the "diagnostic" tests for the hepatitis C virus and the Lyme agent, poor test performance may be ignored in the case where benefits, however defined, outweigh poor performance.

(2) Even if there are test abnormalities which can be associated with CFS there is no need to make a more definitive diagnosis because there is no treatment for the disease.

If this were a valid argument, then it would also apply to multiple sclerosis, many cancers, acute infectious mononucleosis, and even AIDS. Documentation of an illness by objective criteria is important not only to confirm the diagnosis, but also to reassure the patient about other disorders they may or may not have. Reassurance is itself therapeutic and proportional to the degree of objective support found for a diagnosis.

Though there may be no scientifically validated treatment options for CFS (a situation which may soon change with the recent conclusion of the Ampligen trials), there are many therapeutic rationales based on test abnormalities which can defend empiric therapy. Such rationale exist for T-cell activation, certain immune deficiency states, herpes-group virus reactivation and even nonspecific brain injury. In the everyday practice of medicine, empiric therapy is often warranted in severe or functionally devastating illness. It is common practice to use unproven but rational therapies to treat clinical diagnoses such as a migraine, PAS, atypical depression, and many other disorders. Finally, documentation of abnormalities associated with CFS can assist the patient in disability arguments.

Disability Law Judges almost never respond favorably to disabling disorders without objective findings. This is even more the case for emerging disorders. The ability to successfully argue for disability is an extremely important aspect of therapy for this disorder. We have several examples of patients coming off disability and returning to work in part because the disability concept can itself be therapeutic.

(3) CFS is a "self-limited illness" which nearly always responds to rest, good nutrition, and proper exercise. As such, little is gained from extensive testing other than to disprove the presence of other disorders.
This misperception of CFS patients is pervasive among many clinicians and the lay public. A debilitating illness lasting years or longer is in fact not self-limited, and it deserves considerable medical attention. Some patients appear to be permanently disabled by this disorder. It may not completely or permanently resolve even in most patients who do see improvement over time. There are theoretical reasons to be concerned and vigilant about long-term health issues in all CFS patients.

Also, and intuitively, it seems to us to be helpful to intervene early in the course of CFS, even if only to dispel the false idea that any exercise will help this disorder and to counsel patients on lifestyle adjustment and symptom relief, especially for sleep disorder. Good documentation of this disorder lays the groundwork for future empiric intervention should it be necessary and gives a baseline with which to compare future results.

The CDC Case Definition

A case definition for CFS proposed by researchers at the CDC and elsewhere was published in 1988 1 . This clinical case definition consists of both major (all must be met) and minor (some but not all must be met) criteria. Difficulties in the application of this case definition include: How does one define a 50 percent or greater reduction in activity? Exactly how far does one go to exclude other disorders? What does one do with patients with remote onset--say in childhood—of chronic fatigue who would be excluded by the current case definition? Should some minor criteria be moved to major criteria and others dropped entirely? What does one do with patients who have confounding medical and psychiatric problems which might explain some if not all of their symptoms? What does one do with patients who lack severity criteria or sufficient signs and symptoms? What signs or symptoms and what other objective tests should be added to sharpen the diagnosis?

While some of these questions have been partially addressed by the authors of the CDC case definition, most persist and are handled differently by different investigators. Despite the problems with the present case definition, we believe that it generally functions to separate most cases from possible or probable non-cases. We recommend continued use of the criteria but designate probable non-cases who meet criteria and probable cases who do not meet criteria as atypical cases or non-cases of CFS.

Further subdivision of atypical cases by severity and confounding medical or psychiatric issues is probably a worthwhile endeavor and has been adopted by the CDC in their surveillance studies.

Clinical Observations Helpful in the Diagnosis of CFS

We have had the opportunity to make a number of clinical observations in over 1,200 cases of CFS which we believe are helpful in the diagnosis of CFS. None of these findings can be used individually to diagnose a case, but they add collective weight to the final clinical judgment. Some patients will have a normal physical examination and many will have essentially normal routine laboratory values.

Physical Findings - Contrary to suggestions by some investigators, abnormalities on physical examination, although sometimes subtle, are usually present:
  1. Fever at or above 99.2 F in 38% of patients
  2. Subnormal temperatures
  3. Intermittent tachycardia
  4. Low blood pressures
  5. Abnormal oral pharynx exam, including: buccal mucosal ulcerations; posterior cobblestoning, erythema and "crimson crescents" over soft palate; tongue coatings or blisters; and rare thrush
  6. Fluctuating anisocoria over time in dim light
  7. Photophobia
  8. End gaze nystagmus
  9. Posterior cervical lymphadenia with slight, palpable enlargement, usually asymmetric
  10. Axillary lymphadenia with slight, palpable enlargement, usually asymmetric
  11. Tender points typical for fibromyalgia
  12. Mild to severe skin atrophy of distal finger tips, loss of fingerprints
  13. Diffuse abdominal tenderness
  14. Hyperreflexia is very common, worse in lower extremities, and with occasional unsustained clonus
  15. Mild tremulousness on drift testing
  16. Intention tremor
  17. Mitral valve prolapse
  18. Sallow skin tone
  19. Brittle, thinning hair with reddish tint
  20. Excessive titubation or actual inability to maintain Romberg or tandem stance and tandem walk (probably represents an apraxia or vestibular disturbance and very common in these patients)
  21. Tentativeness or inability to serial seven subtract, especially while attempting Romberg test, is very common
  22. Facial and torso rashes, mostly macular erythema and acneform eruptions
Routine Laboratory Tests - Findings may be subtle but are often present
  1. Low sedimentation rates in 40% (0-3 mm/hr); modestly elevated (20-40) in 10%, usually will fall over time
  2. Akaline urines are common (PH>7.0)
  3. Mild leukocytosis or leukopenia
  4. Macrocytosis with elevated MCV
  5. Mild LFT elevations, rarely persist
  6. Atypical lymphocytes
  7. Elevated blood lipids
  8. Low normal free T4 and TSH
  9. Low level ANAs, may not persist
  10. Rare positive Lyme antibodies - failure to respond to accepted therapy
Immunologic Dysfunction

Immunologic tests have been frequently applied to patients with CFS in part because they are frequently abnormal and in part because the signs and symptoms of CFS can be explained as a consequence of immunologic function or dysfunction. Fever, sore throat, swollen glands, aching muscles and joints, sleep disturbance, and even neuropsychological complaints can all be attributed to immunologic responses generally ascribed to T-cell activation with excess cytokine production (i.e., IL-1 alpha, IL-2, interferon-alpha). Whether this excessive immune response is itself the cause (auto-immune or neuroendocrine defects) of CFS or perhaps the effect of a chronic viral infection or even compensation, by whatever means, for an acquired immune deficiency remains uncertain.

We propose here a set of tests that look for evidence of T-cell activation along with discrete immune defects.  All of these tests are available from commercial laboratories and defended by published medical literature.2-20 Although specific immune tests do not always correlate with disease severity, nor is any single test always abnormal, they become more valuable when used as an array or set of tests used to determine a pattern of immune dysfunction.

Tests of Immunity T-cell activation

1. IL-2 receptor, T8-receptor -elevated
2. One and two-color flow cytometry
  • CD3/DR, CD8/DR - elevated
  • CDllb, CD8/CDllb - depressed
  • CD3 - elevated
  • CD56 - elevated
  • CD4/CD45R - depressed
  • CD20 elevated (3) 
  • Interferon-alpha, IL-1-alpha - elevated (4) 
  • Intracellular 2-5A, Rnase-L antiviral activity - elevated
Discrete Immune Defects
  1. Hypogammaglobulinemia (IgG)
  2. IgG subclass deficiencies
  3. Anergy and hypoergy by epicutaneous skin testing
  4. Mitogen stimulation deficiencies (T and B cell deficiencies)
  5. Natural Killer (NK) cytotoxic deficiencies
  6. Circulating immune complexes

Viral Activation or Re-activation

Viral activity or activation is suggested in CFS due in part to the abrupt onset of a flu-like, mono-like, or encephalitic-like illness which usually precedes the development of this disorder, its signs and symptoms over time, and the nature of the immune response observed. The common symptoms of debilitating fatigue, swollen glands, sore throat, and headache have suggested re-activation of mono-causing herpes viruses (EBV, HHV-6, or CMV), which are usually contracted much earlier in life. It is probable that these lymphotropic herpes viruses are involved in most cases of CFS but are not the cause of CFS. It is likely that they are merely reflecting T-cell activation itself or loss of immunologic control of these viruses due to a state of immune deficiency by whatever cause. It is conceivable that an as-yet-unknown virus has initiated CFS much as HIV initiates AIDS. Such a virus is likely to be subtle, immunotropic, and neurotropic. Retroviruses are all of these things, and attention has focused on them in recent years.

The following is a set of tests that look for evidence of re-activation of herpes-group viruses as well as evidence of a possible retrovirus infection. The retroviral assays include DNA amplification technology and evidence of non-specific cytopathic effects in cell culture consistent with a family of retroviruses recently associated with CFS. Again, more important than the results of a single test is the pattern of herpes-group virus re-activation, evidence of retroviral gene sequences, and evidence of retroviral cytopathology in nonspecific culture assays, all of which support the role of viral activation in CFS. Whether this activity is cause or effect, however, is still open to question. It should be noted that lymphotropic herpes viruses and retroviruses can activate or transactivate each other and are therefore synergistic.

Tests of Viral Activation or Re-activation Herpes-Group Virus Assays 21-26
  1. Antibody assays for EBV, HHV-6, CMV, HSV-1,2 & VZ looking for elevated titers consistent with recent activity.
  2. Viral DNA amplification for EBV, HHV-6, and CMV using the polymerase chain reaction (PCR), with positive results suggesting viral activity.
  3. Giant cell assays with monoclonal labeling for various herpes-group viruses, with positive results suggesting such viral activity.

Retrovirus Assays 27-30
  1. Cytopathology in fibroblast cell lines consistent with human foamy retroviruses or human intracisternal retroviruses
  2. HTLV-II gag probes, run using low-stringency PCR to detect retroviral gene sequences present in CFS patients which are HTLV-II-like but not HTLV-II. This test will likely give way to specific probes based on conserved sequences of actual retroviral isolates of whatever family cultured from CFS patients.
Exercise-Related Dysfunction

Patients with CFS describe characteristic worsening of their symptoms following exercise as well as exercise limitations. Exercise ergometry with gas analysis has proven useful in CFS to document defects in functional capacity; a functional consequence of debilitating fatigue. Several reports have attracted further interest in this technology as a diagnostic instrument for showing neuroendocrine defects in response to exercise, 31 as well as defects in respiratory control mechanisms within the central nervous system in CFS patients.

Bicycle ergometry with gas analysis has proven useful to document disability in CFS and will likely prove useful to document deep brain dysfunction characteristic of CFS patients.

Tests of Exercise-Related Dysfunction Important measurements using bicycle ergometry with gas analysis
  1. Peak oxygen consumption at maximum exertion
  2. Work rate at anaerobic threshold as against peak work rate.
  3. Oxygen consumption at anaerobic threshold
  4. Work efficiency - independent of conditioning
  5. Breath-to-breath tidal volume variance at peak exercise
Brain Dysfunction

Perhaps no set of symptoms is more disturbing to CFS patients nor more striking to clinicians than the neurocognitive complaints seen in CFS. They characteristically evolve slowly over time and often grow to dominate the clinical scene. At first there is only the mental "fog" of a viral syndrome, but this slowly gives way to the more worrisome complaints of memory disturbance, word searching, processing speed, and spatial disorganization. There also may be neuropsychological complaints including panic attacks, depression, and mood swings. Evidence of characteristic abnormalities on neuropsychometric tests and characteristic profiles on the MMPI have been reported.32,33 Defects on structural34,35 (MRI) and functional scans (SPECT and Topographic Computer EEC) of the brain have also been reported.36,37 As mentioned above, soft neurologic findings are also frequently demonstrated under physical examination. We have proposed a number of approaches to document evidence of brain dysfunction in CFS.

Tests to Document Brain Dysfunction

Structural Scans - MRI is recommended for any patient with an abnormal neurologic examination or significant neurologic symptoms. This is done primarily to rule out structural abnormalities which might mimic CFS signs and symptoms. Many CFS patients (50 percent or more) will exhibit small punctate areas of increased signal, usually in subcortical white matter areas.

Functional Scans - SPECT scans, which primarily measure blood flow, are frequently abnormal (80 to 85 percent), showing areas of decreased perfusion primarily in the temporal and frontal lobes.

Topographic computer EEC brain mapping has shown increased slow-wave activity usually in the anterior leads and especially when patients are engaged in certain cognitive tasks. This usually diffuse slow-wave activity strongly suggests metabolic or toxic encephalopathy.

Neuropsychometric Testing - A complete Halstead Reitan battery or subsets of this battery form the basis of determining the nature and extent of cognitive impairment in CFS. Patients will exhibit characteristic focal and multifocal deficits in which performance on certain subtests will be normal or even well above normal while performance on certain other subtests will be substantially below normal. Performance deficits appear to occur more frequently in particular subtests of this battery.

Knowledge Is Power

CFS clinical and bench researchers are developing an array of tests which are increasingly sensitive and specific for CFS — particularly when used in combination. When patients present with symptoms that suggest CFS, we believe it is in their best interest to selectively employ these tests to confirm the diagnosis and to document the nature and extent of each case. This information: increases both the physician's and patient's confidence in the diagnosis and their ability to track the course of the disease; enables the patient to make appropriate lifestyle adjustments (including defense of disability claims when necessary); and provides the physician with a basis for therapeutic intervention.

References

1. Holmes GP, Kaplan JE, Gantz NM, Komaroff AL, Schonberger LB, Straus SE, Jones JF, Dubois RE, Cunningham-Rundles C, Pahwa S, Tosato G, Zegan SLS, Purtilo DT, Brown N, Schooley RT, Brus I. Chronic fatigue syndrome: a working case definition. Ann of Int Med, 108:387-9, 1988
2. Klimas N, Salvato F, Morgan R, abnormalities in chronic fatigue syndrome. J of Clin Micro, 28:1403-10, 1990
3. Lloyd AR, Wakefield D, Boughton CR, Dwyer JM. Immunological abnormalities in the chronic fatigue syndrome. M J of Australia, 151(3):122-4, 1989
4. Caligiuri M, Murray C, Buchwald D, Levine H, Cheney PR, Peterson D, Komaroff AL, Ritz J. Phenotypic and functional deficiency of natural killer cells in patients with chronic fatigue syndrome. J Immun 139:3306-13, 1987
5. Aoki T, Usuda Y, Miyakoshi H, Tamura K, Herberman RB. Low natural killer syndrome: clinical and immunologic features. Cat Immun Cell Growth Regul, 6:116-128, 1987
6. Tosato G, Straus S, Henle W, Pike SE, Blaese RM. Characteristic T cell dysfunction in patients with chronic active Epstein-Barr virus infection (chronic infectious mononucleosis). J Immunol 134:3082-8, 1985
7. Prieto J, Subir'a ML, Castilla A, Serrano M. Naloxone reversible monocyte dysfunction in patients with chronic fatigue syndrome. Scan J Immunol. 30(1)-.13-20, 1989
8. Salvato F, Fletcher M, Ashman M, Klimas N. Immune dysfunction among chronic fatigue syndrome (CFS) patients with clear evidence of Epstein-Barr virus (EBV) reactivation. J Exp Clin Cancer Res, (sup)7:89, 1988
9. Linde A, Hammarstrom L, Smith C. IgG subclass deficiency and chronic fatigue syndrome. Lancet i:885-6, 1988
10. Komaroff AL, Geiger AM, Wormseley S. IgG subclass deficiencies in chronic fatigue syndrome. Lancet i(8597):1288-9, 1988
JL1. Read R, Spickett G, Harvey J, Edwards AJ, Larson HE. IgG 1 subclass deficiency in patients with chronic fatigue syndrome. Lancet, i:241-2, 1988
12. Franco E, Kawa-ha K, Doi S, Yumura K, Murata M, Ishihara S, Tawa A, Yabuuchi H. Remarkable depression of CD4+2H4+T cells in severe chronic active Epstein-Barr virus infection. Scan J Immunol 26:769-73, 1987
13. Cheney PR, Rozovsky I. The relationship of soluble IL-2 receptor to functional capacity in CFS. The CFIDS Association 1990 CFIDS Research Conference, "Unravelling the Mystery," Nov. 17-18, 1990, Charlotte, NC.
14. Subira ML, Castilla A, Civeira MP. Deficient display of CD3 on lymphocytes of patients with chronic fatigue syndrome [Letter] J Infect Dis 60(l):165-6, July,1989.
15. Levy J, et al. Chronic fatigue syndrome: clinical condition associated with immune activation. Lancet Vol.338, No.8769, Sept. 1991
16. Biron, et al. Severe herpesvirus infections in an adolescent without natural killer cells. NE J Med 320: 1731-5, June 29, 1989
17. Morte S, Castilla A, Iveira MP, Serrano M, Prieto J. Production of interleukin-1 by peripheral blood mononuclear cells in patients with chronic fatigue syndrome [Letter]. J Infect Dis, 159:362, 1989
18. Straus SE, Dale JK, Peter JB, Dinarello CA. Circulating lymphokine levels in the chronic fatigue syndrome [Letter]. J Infect Dis, 160(6):1085-6 1989
19. Cheney PR, Dorman SE, Bell DS. Interleukin-2 and the chronic fatigue syndrome [Letter]. Ann Int Med 110:321 1989
20. Linde A, Anderson B, Svenson SB, Ahrne H, Carlsson M, Forsberg P, Hugo H, Karstop A, Lenkei R, Lindwall A, Loftenius A, Sail C, Anderson J. Serum levels of lymphokines and soluble cellular receptors in primary Epstein-Barr virus infection and in patients with chronic fatigue syndrome. J Infect Dis, 165:994-1000, 1992
21. Buchwald D, Freedman A, Ablashi D, Sullivan J, Caliguiguri M, Weinberg D, Hall C, Ashley R, Saxinger C, Balachandran N, Ritz J, Nadler L, Komaroff AL. A chronic postinfectious fatigue syndrome associated with benign lymphoproliferation, B-cell proliferation, and active replication of human herpesvirus-6. J Clin Immun, 10(6):335-344, 1990
22. Komaroff AL. Human herpesvirus-6 and human disease. Am J Clin Pathol, 93:836-7, 1990
23. Steeper TA, Horwitz CA, Ablashi DV, et al. The spectrum of clinical and laboratory findings due to human herpesvirus-6 (HHV-6) in patients with mononucleosis-like illnesses not due to EBV or CMV. Am J Clin Pathol, 93:836-7, 1990
24. Tobi M, Moraq A, Ravid Z, Chowers I, Feldman-Weiss V, Mitchell Y, Chetrit E Ben, Shalit M, Knobler H. Prolonged atypical illness associated with serological evidence of persistent Epstein-Barr virus infection. Lancet, 1:61-4, 1982
25. Jones JF, Ray CG, Minnich LL, Hicks MJ, Kibler R, Lucas DO. Evidence for active Epstein-Barr virus infection in patients with persistent, unexplained illnesses; elevated anti-early antigen antibodies. Ann Int Med 102:1-7, 1985
26. Straus SE, Tosato G, Armstrong G, Lawley T, Preble OT, Henle W, Davey R, Pearson G, Epstein J, Brus I, Blaese RM. Persisting illness and fatigue in adults with evidence of Epstein-Barr virus infection. Ann Int Med, 102:7-16, 1985
27. DeFreitas E, Billiard B, Cheney PR, Bell DS, Kiggundu E, Sankey D, Wroblewska Z, Palladino M, Woodward JP, Koprowski H. Retroviral sequences related to human T-lymphotropic virus type II in patients with chronic fatigue immune dysfunction syndrome. Proc Natl Acad Sci USA, Vol.88, mpp.2922-26, April 1991
28. Bothe K, Aguzzi A, Lassmann H, Rethwilm A, Horak I. Progressive encephalopathy and myopathy in transgenic mice expressing human foamy virus genes. Science, Vol.253, pp. 555-567, August, 1991
29. Cameron KR, Bircham SM. Moss MA. Isolation of foamy virus from patient with dialysis encephalopathy: Lancet p. 796, October 7, 1978
30. Weiss RA. A virus in search of a disease. Nature, Vol.333, June 9, 1988
31. Daly J. The ventilatory response to exercise in CFS. The Third Annual Conference - Chronic Fatigue Syndrome and the Brain, Bel-Air, California, April 24-26, 1992
32. Onischenko T. It's all in your head - well, indeed it is... The Third Annual Conference - Chronic Fatigue Syndrome and the Brain, Bel-Air, California, April 24-26, 1992
33. Iger, LM. Changes on the CFS profile with the MMPI-2. The Third Annual Conference - Chronic Fatigue Syndrome and the Brain, Bel-Air, California, April 24-26, 1992
34. Daugherty SA, Henry BE, Peterson DL, Swarts RL, Bastien S, Thomas RS. Chronic fatigue syndrome in northern Nevada. Rev Infect Dis, 13{Supp l):S39-44, 1991 (MRI Scans)
35. Buchwald D, Cheney PR, Peterson DL, Henry B, Wormsley SB, Geiger A, Abalashi DV, Salahuddin Z, Saxinger C, Biddle R, Kikinis R, Jolesz FA, Folks T, Balachandran N, Peter JB, Gallo RC, Komaroff AL. A chronic illness characterized by fatigue, neurologic and immunologic disorders, and active human herpesvirus-6. Ann Int Med, Vol.116,(2), pp.103-113, January 15, 1992
36. Mena I. Study of cerebral perfusion by NeuroSpect in patients with chronic fatigue syndrome. Symposium on Myalgic Encephalomyelitis, p.21, Cambridge, England, April 1990 (SPECT Scans)
37. Cheney PR, et al. CFS: A clinical perspective on the use of MEG and EEC brain mapping. The Third Annual Conference - Chronic Fatigue Syndrome and the Brain, Bel-Air, California, April 24-26, 1992

Monday, December 17, 2012

Discovery Could Lead to Faster Diagnosis For Some Chronic Fatigue Syndrome Cases

Epstein-Barr Virus

November 14, 2012 by Emily Caldwell in Diseases, Conditions, Syndromes

In a pilot study of six patients, scientists detected specific antibodies linked to latent Epstein-Barr virus reactivation in blood samples from people who had experienced classic CFS symptoms and responded to antiviral treatment. Control blood samples from 20 healthy people showed no such antibodies.

The research team, led by scientists from Ohio State University and Oakland University William Beaumont School of Medicine, acknowledges that the number of patients is small. But the researchers say the study's power rests in their access to 16 months of blood samples for each patient – a collection allowing for an unprecedented longitudinal look at CFS.

The researchers plan to move forward with development of a clinical laboratory test that can detect these antibodies in blood samples.

The study is published in the Nov. 14 issue of the journal PLOS ONE. The Epstein-Barr virus is a human herpes virus that causes infectious mononucleosis and several different types of tumors. An estimated 95 percent of Americans have been infected with the virus by adulthood, according to the Centers for Disease Control and Prevention (CDC), but fewer than half have experienced an active illness. Once a person is infected, the virus remains dormant in the body, and can be reactivated without causing symptoms of illness.

In these six patients, the study suggests that a latent Epstein-Barr virus had begun to reactivate, but that the newly awakened virus never reached its full potential to take over its host cells. That partial reactivation advanced enough to generate at least two viral proteins, DNA polymerase and dUTPase, and these patients produced antibodies specifically designed to identify and neutralize those proteins for more than a year.

The scientists theorize that even in the absence of a complete active infection, these viral proteins' ability to induce inflammatory chemical signals causes enough immune system chaos to lead to CFS. The disorder's main symptom is profound fatigue for at least six months that does not improve with rest, and is accompanied by problems that can include weakness, muscle pain, impaired memory and depression. Because the illness mimics many other disorders, diagnosis is difficult. An estimated 1 million Americans have CFS, but experts believe only 20 percent are diagnosed.

The study's senior researchers agree that the work should be repeated in more patients "to confirm that these observations are real," said virologist Ron Glaser, director of the Institute for Behavioral Medicine Research at Ohio State and a co-author of the study. "But finally, after more than 20 years, this is at least something to go on."

Glaser's primary collaborators on this work are Marshall Williams, professor of molecular virology, immunology and medical genetics at Ohio State, and A. Martin Lerner, a professor of internal medicine at Oakland University William Beaumont School of Medicine.

Ohio State and Lerner's private practice, CFS LLC, have applied for a patent for the diagnostic method.

Glaser and Williams first published a paper in 1988 suggesting that these two viral proteins associated with partially reactivated Epstein-Barr virus could function as biomarkers for certain illnesses, including CFS. Meanwhile, Lerner became severely ill in 1986 and struggled for 10 years with CFS symptoms before treatment with antivirals dramatically improved his health.

Lerner, an infectious diseases specialist, runs his private CFS practice in Michigan, and his long-term tracking of patients' characteristics and response to treatment made this longitudinal research possible.

The fact that CFS patients experience different symptoms and multiple types of viral and bacterial infections has led researchers to believe CFS potentially has numerous causes. That lack of uniformity also complicates the diagnostic process and development of treatments.

"Part of the problem in trying to identify an agent or biomarkers for chronic fatigue syndrome is the extreme variability among people who say they have CFS. How to sort that out has held the field back a lot of years," said Glaser, who has studied the Epstein-Barr virus (EBV) for decades.

Lerner had long ago separated 142 of his patients into two groups: those who had tested positive for various antibodies against three types of herpes viruses and responded to months-long treatment with one of two types of antivirals, and a smaller group that had viral infections and a variety of co-infections who showed minimal response to antiviral treatment. As part of this tracking, he collected multiple blood serum samples for more than a year from each patient.

From those patients, he selected blood samples from six for this study. Five had been identified as an Epstein-Barr virus subset, and the sixth had Epstein-Barr virus and a bacterial co-infection. For comparison, researchers collected samples from 20 healthy people matched to the six CFS patients for age and sex.

Lerner, too, had independently hypothesized that CFS patients might be experiencing partial virus reactivation. Patients might test negative for the most active antibodies required to fight a virus, but could still recover from CFS after long-term antiviral treatment. One antiviral he uses is known to inhibit DNA polymerase, which would halt Epstein-Barr virus reactivation in its tracks.

With the CFS patients' and control blood samples in hand, Williams used a highly sensitive laboratory method to detect whether they contained antibodies to the two target Epstein-Barr viral proteins, DNA polymerase and dUTPase, that are produced early in the process of viral reactivation.

Overall, 78.8 percent of the serum samples from the six CFS patients were positive for antibodies against DNA polymerase and 44.2 percent were positive for antibodies against dUTPase. No antibodies to these two proteins were detected in the 20 control samples.

"Every one of the six had antibodies to DNA polymerase or EBV dUTPase and those antibodies persisted over some 408 days," Lerner said. "And the antibody levels were extraordinarily high." High levels of antibodies circulating in the blood suggest long-term immune activation against those proteins.

Williams noted that the levels might be less significant than the antibodies being present in the first place.

"If you look at most healthy individuals, they wouldn't have any reason to have an antibody against either of these proteins," he said. "The antibodies alone are a good differentiator."

Reference:

Antibody to Epstein-Barr Virus Deoxyuridine Triphosphate Nucleotidohydrolase and Deoxyribonucleotide Polymerase in a Chronic Fatigue Syndrome Subset 
A. Martin Lerner, Maria E. Ariza, Marshall Williams, Leonard Jason, Safedin Beqaj, James T. Fitzgerald, Stanley Lemeshow, Ronald Glaser . PLoS ONE. 2012; 7(11): e47891 

Read the abstract of the PLoS  ONE article here: http://www.ncbi.nlm.nih.gov/pubmed/23155374


Related Posts Plugin for WordPress, Blogger...